DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 1-2/2022 str. 32     <-- 32 -->        PDF

Ostrovský, R., M. Kobza, J. Gažo, 2017: Extensively damaged trees tested with acoustic tomography considering tree stability in urban greenery, Trees, 31 (3): 1015-1023.
Paulić, V, 2015: Prosudba opasnih stabala korištenjem vizualnih metoda i arborikulturnih instrumenata, Doktorska disertacija, Šumarski fakultet, Zagreb, 296 str.
Paulić, V., D. Drvodelić, S. Mikac, G. Gregurović, M. Oršanić, 2015: Arborikulturna i dendroekološka analiza stanja stabala divljeg kestena (Aesculus hippocastanum L.) na području grada Velike Gorice. Šumarski list, Vol. 139 (1-2): 21-34.
Rinn, F., 2012: Arbotom: User manual, Heidelberg, Njemačka.
Rust, S., 2017: Accuracy and Reproducibility of Acoustic Tomography Significantly Increase with Precision of Sensor Position, Journal of Forest and Landscape Research, Vol. 2(1): 1–6.
Tarasiuk, S., G. Jednoralski, K. Krajewski, 2007: Quality assessment of old-growth Scots pine stands in Poland, U: M. Grześkiewicz (ur.), Quality control for wood and wood products, Warsaw University of Life Sciences, Warsaw, Poland, str. 153–160.
TIBCO Software Inc. 2018: Statistica (data analysis software system), version 13. http://tibco.com.
Tikvić, I., D. Ugarković, I. Peles, I. Knežić, G. Medunić-Orlić, S. Marinić, L. Butorac, A. Čmrlec, R. Koharević, M. Nazlić, S. Pavlinović, M. Špika, R. Tomić, 2017: Procjene usluga šumskih ekosustava i općekorisnih funkcija šuma Park šume Marjan u Splitu. Šumarski list, Vol. 141 (5-6): 277-285.
Tomiczek, C., D. Diminić, T. Cech, B. Hrašovec, H. Krehan, M. Pernek, B. Perny, 2008: Bolesti i štetnici urbanog drveća, Šumarski institut, Jastrebarsko, Šumarski fakultet Sveučilišta u Zagrebu, 384 str.
Tyrväinen, L., S. Pauleit, K. Seeland, S. De Vries, 2005: Benefits and Uses of Urban Forests and Trees, U: C. Konijnendijk, K. Nilsson, T. B. Randrup, J. Schipperijn (ur.), Urban forests and trees, Springer, Berlin, Heidelberg, str. 81-114.
Schneider, C. A., W. S. Rasband, K. W. Eliceiri, 2012: NIH Image to ImageJ: 25 years of image analysis, Nat. Methods, 9 (7): 671-675.
Sabadi, R., 1996: Uporaba hrastovine, U: D. Klepac, J. Dundović, J. Gračan (ur.), Hrast lužnjak (Quercus robur L.) u Hrvatskoj, HAZU, Vinkovci-Zagreb, str. 331-371.
Škarica, T., 2019: Procjena površine zdravog drva zvučnim tomografom kod stabala hrasta kitnjaka u Parku Maksimir, Diplomski rad, Sveučilište u Zagrebu Fakultet šumarstva i drvne tehnologije, 31 str.
Ugarković, D., M. Matijević, I. Tikvić, K. Popić, 2021: Neka obilježja klime i klimatskih elemenata na području grada Zagreba. Šumarski list, Vol. 145 (9-10): 479-488.
van Wassenaer, P., M. Richardson, 2009: A Review of Tree Risk Assessment using minimally invasive technologies and two case studies, Arboric. J., Vol. 32, 275-292.
Vitasović Kosić, I., B. Aničić, 2005: Istraživanje socioloških aspekata parka Maksimir, J. Cent. Eur. Agric., Vol. 6 (1): 77-84.
Wang, L., H. Xu, C. Zhou, L. Li, X. Yang, 2007., Effect of sensor quantity on measurement accuracy of log inner defects by using stress wave, J. For. Res., Vol. 18 (3): 221-225.
Wang, X., R.B. Allison, 2008: Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling. Arboric Urban For, 34 (1): 1– 4.
Wang, X., J. Wiedenbeck, S. Liang, 2009: Acoustic tomography for decay detection in black cherry trees, Wood Fiber Sci, 41: 127-137.
Yue, X, L. Wang, J.P. Wacker, Z. Zhu, 2019: Electric resistance tomography and stress wave tomography for decay detection in trees — a comparison study. PeerJ 7:e6444 https://doi.org/10.7717/peerj.6444.
*Struna Hrvatsko strukovno nazivlje: URL: http://struna.ihjj.hr (pristupljeno 20.09.2021).
Summary
Urban trees and forests contribute to citizens’ wellbeing and provide a wide range of benefits. Yet in the urban environment, trees are exposed to a range of abiotic and biotic factors that can impair growth. Wood decay fungi are a major cause of tree failure. Devices supported methods that measure certain wood properties are often used in addition to visual assessment of urban trees. Acoustic tomography is a device that measures the velocity of sound wave propagation through wood in the radial and tangential directions and is used to assess internal defects in trees. The aims of this study were to determine the size and position of healthy and decayed wood and to define the accuracy of acoustic tomography on ten old sessile oak trees in the Maksimir Forest Park, Zagreb. Results of acoustic tomography images (tomograms) were compared with photographs of tree cross sections after felling to confirm decay. The visual assessment indicated the presence of decay on ten trees, and this decay was visible on eight of ten tomograms. Decay was further confirmed in seven cross-sections after felling. Of these, three trees had incipient wood decay, while four had active wood decay with cavity formations. The shape of tomograms and position of decay were similar to the cross-section photographs for eight and nine trees, respectively. The area of decayed wood in different wood condition categories was correctly shown on the tomograms in comparison with the cross-section photographs in six of the trees. Acoustic tomography underestimated the area of sound wood and overestimated incipient wood decay in comparison with the actual state of cross-sections, while the area of active degraded wood and cavities was accurately represented.
Key words: sessile oak, urban forest, arboriculture, acoustic tomography, decayed wood.