DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 11-12/2018 str. 59     <-- 59 -->        PDF

differ in numerous morphological traits, productivity, and fruit quality. In addition, almost all of the populations in the third group are of natural structure. The mentioned populations, from the North Anatolia Region (Black Sea Coast) of Turkey, are in general characterized with higher genetic (Villani et al. 1999; Mattioni et al. 2017) and morphological variation. Populations in the first and second group are both natural and grafted.
Miguelez et al. (2004) found that moisture contents were over 50% in chestnut seeds obtained from 15 different populations spread over Galicia region in Spain. In our study, the fruit moisture content ranged from 38.46% to 52.21%. Differences between these two studies are probably the result of different methodologies. In our research, whole fruits were used, while Miguelez et al. (2004) analysed only the edible part of the fruit, i.e. the kernel.
In our research, sturdiness quotient ranged from 1.85 to 3.20. Sturdiness quotient is a criterion commonly used for seedling quality classification (Bacon 1979; Aldhous 1994; Genç and Yahyaoglu 2007). The ideal value for a seedling to be considered as sturdy is less than six (Jaenicke 1999). Seedlings with sturdiness ratio greater than six were actually thin, tall and etiolated, while a small quotient indicates sturdy plants with a greater chance of survival, particularly on windy or dry sites (Takoutsing et al. 2013).
As a conclusion, specific east-west increase in fruit sizes in the chestnut forests of Turkey is probably the result of ecological conditions and human influence. Those findings are in the line with the result of the previously published paper by Villani et al. (1991). Authors concluded that human influence could have enhanced the genetic, morphometric, and physiological differentiation of natural western chestnut populations with respect to the central and eastern ones. In the direction of sustainable forestry principles, the stand structure of the natural sweet chestnut forests must always be protected, and applications such as grafting works can caused decreasing of genetic diversity.
REFERENCES
LITERATURA
Akdogan, S., E. Erkam, 1968: Dikkat Kestane Kanseri Goruldu, Tomurcuk, 1: 4–5.
Aldhous, J.R., 1994: Nursery policy and planning. Forest Nursery Pratice. (eds. J.R. Aldhous and W.L. Mason) Forestry Commission Bulletin, 111, 1-12, London, U.K.
Bacon, G.J., 1979: Seedling morphology as an indicator of planting stock quality in conifers. Paper to IUFRO Workshop on “Techniques for Evaluating Planting Stock Quality”, New Zeland.
Bednorz, L., 2006: Morphological variability of leaves of Sorbus torminalis (L.) Crantz in Poland, Acta Soc Bot Pol, 75 (3): 233–243.
Bolvanský, M., M. Užík, 2005: Morphometric variation and differentiation of European chestnut (Castanea sativa) in Slovakia, Biologia (Bratislava), 60 (4): 423–429.
Botta, R., A. Akkak, P. Guaraldo, G. Bounous, 2005: Genetic characterization and nut quality of chestnut cultivars from Piemonte (Italy), Acta Hortic, 693: 395–401.
Brus, R., D. Ballian, P. Zhelev, M. Pandža, M. Bobinac, J. Acevski, Y. Raftoyannis, K. Jarni, 2011: Absence of geographical structure of morphological variation in Juniperus oxycedrus L. subsp. oxycedrus in the Balkan Peninsula, Eur J For Res, 130: 657–670.
Brus, R., M. Idžojtić, K. Jarni, 2016: Morphologic variation in northern marginal Juniperus oxycedrus L. subsp. oxycedrus populations in Istria, Plant Biosyst,150 (2): 274–284.
Bruschi, P., P. Grossoni, F. Bussotti, 2003: Within- and among-tree variation in leaf morphology of Quercus petraea (Matt.) Liebl. natural populations, Trees, 17: 164–172.
Daneshvar, A., M. Tigabu, A. Karimidoost, P.C. Odén, 2016: Stimulation of germination in dormant seeds of Juniperus polycarpos by stratification and hormone treatments, New Forest, 47 (5): 751–761.
Davis, P.H., 1982: Flora of Turkey-VII, Edinburg Universty Press.
Douaihy, B., K. Sobierajska, A.K. Jasińska, K. Boratyńska, T. Ok, A. Romo, N. Machon, Y. Didukh, M.B. Dagher-Kharrat, A. Boratyński, 2012: Morphological versus molecular markers to describe variability in Juniperus excelsa subsp. excelsa (Cupressaceae), AoB Plants, pls013.
Drvodelić, D., T. Jemrić, M. Oršanić, V. Paulić, 2015: Fruits size of wild apple (Malus sylvestris /L./Mill.): impact on morphological and physiological properties of seeds, Sumar List, 139 (3-4): 145–153.
Ertan, E., 2007: Variability in leaf and fruit morphology and in fruit composition of chestnuts (Castanea sativa Mill.) in the Nazilli region of Turkey, Genetic Resources and Crop Evolution, 54: 691–699.
Ertan, E., G. Seferoğlu, G.G. Dalkılıç, F.E. Tekintaş, S. Seferoğlu, F. Babaeren, M. Önal, Z. Dalkılıç, 2007: Selection of chestnuts (Castanea sativa Mill.) grown in Nazilli District, Turkey, Turk J Agric For, 31: 115–123.
Fernández-López, J., R. Alía, 2003: Technical Guidelines for genetic conservation and use for chestnut (Castanea sativa Mill.), EUFORGEN International Plant Genetic Resources Institute, Rome.
Genç, M., Z. Yahyaoğlu, 2007: Kalite Sınıflamasında Kullanılan Özellikler ve Tespiti (Properties and Determination Used in Quality Classification), Seedling Standardization, (eds. Z. Yahyaoğlu and M. Genç), 75, pp. 355–465, Publication of Süleyman Demirel University, Isparta, Turkey.
Goulao, L., T. Valdiviesso, C. Santana, C.M. Oliveira, 2001: Comparison between phonetic characterisation using RAPD and ISSR markers and phenotypic data of cultivated chestnut (Castanea sativa Mill.). Genet Resour Crop Ev, 48(4): 329–338.
Gurer, M., M.P. Ottaviani, P. Cortesi, 2001: Genetic diversity of subpopulations of Cryphonectria parasitica in two chestnut-growing regions in Turkey, For Snow Landsc Res, 76 (3): 383–386.
Heiniger, U., D. Rigling, 1994: Biological control of chestnut blight in Europe, Annu Rev Phytopathol, 32: 581–599.
Idžojtić, M., M. Zebec, I. Poljak, J. Medak, 2009: Variation of sweet chestnut (Castanea sativa Mill.) populations in Croatia according to the morphology of fruits, Sauteria, 18: 323–333.