DIGITALNA ARHIVA ŠUMARSKOG LISTA
prilagođeno pretraživanje po punom tekstu




ŠUMARSKI LIST 11-12/2018 str. 44     <-- 44 -->        PDF

al., 2002). Fuel load models are an important basis for determining fire behavior, fire hazard risks, fire management plans, and decision-supporting system for fire management (Alexander, 2007; Sandberg et al., 2001). An important prerequisite for successful fire management is the accurate estimation of the fuel load (Bond-Lamberty et al., 2002). Equations for estimating fuel load are an important basis for determining fire behavior, fire hazard risks, fire management plans, and decision-supporting system for fire management (Alexander, 2007; Sandberg et al. 2001). The amount of data required for the development of fire propagation models in fire estimation systems is gradually increasing (Sandberg et al., 2001). Estimations of typical forest fire features such as fire propagation ratio, fuel consumption, fire intensity, and flame size utilize fuel loading values (Dimitrakopulos, 2002), as well as spatial heterogeneity, which affects these factors (Fernandes, 2009; Hiers et al., 2009). Predicting tree biomass based on fuel inventories provide important modeling data for fire managers and researchers to determine aboveground primary production and so to estimate the fuel load characteristics (Bond-Lamberty et al., 2002; Küçük et al., 2008). Allometric relationships related to structural components of tree species are generally used for predicting intensity and rate of spread of crown fires (Cruz et al., 2003; Gray and Reinhardt, 2003). As independent variables, most allometric equations for measuring tree biomass use either the diameter at breast height (DBH, 1,3 m) (Zianis and Mencuccini, 2004), or the DBH value along with the tree height (H) (Poudel and Temesgen, 2015). DBH is a commonly used and preferred parameter, owing to the fact that it has high correlation with tree biomass (Jiménez et al., 2013), and can be easily obtained from forest inventories (Mitsopoulos and Dimitrakopoulos, 2007a). RCD (root collar diameter) is usually used in allometric equations for estimating biomass of young trees below 1.3 m in DBH (Annighöfer et al., 2016). It is also used to estimate the fuel biomass of young forest areas Küçük et al., 2008). Aside from DBH, H and RCD, crown length (CL) and crown width (CW) have also been used as independent factors to estimate crown biomass in homogeneous stands of many coniferous tree species (Cruz et al., 2003; Mitsopoulos and Dimitrakopoulos, 2007b).
In DBH-based allometric equations, errors in biomass stock measurements generally stem from their usage on larger diameter trees, rather than on the faster growing, smaller diameter trees for which they are more appropriate (Singh et al., 2011). In fact, an increasing number of papers are being published on crown fuel characteristics of trees with DBH values above 8 cm in diameter (Jiménez et al., 2013; Molina et al., 2014; Zianis et al., 2011). On the other hand, problems in estimating the fuel biomass properties of saplings and seedling in fire-prone forests render the estimation of fire behavior even more difficult (Küçük et al., 2008). In Turkey’s Mediterranean biogeography, the proper and sufficient assessment of fuel loads for trees with varying diameters is of strategic importance in fighting fires in this region, which is characterized by a variable topography and stand type. The aim of this study was to develop empirical allometric equations for the estimation of crown fuel loading of Turkish red pine (Pinus brutia Ten.) trees of Southwestern Mediterranean region of Turkey using dendrometric variables. Estimated crown fuel loads could be used in fire behaviour models. Calabrian pine forests cover a total area of 5,85 million ha in Turkey, and constitute 27% of the country’s forests (OGM, 2015). These forests are distributed on the Mediterranean coasts of Turkey, between 1,200 to 1,400 m (supra-Mediterranean stratum) from sea level (Boydak et al., 2006). Calabrian pine forests of Turkey’s Mediterranean, Aegean, and Marmara regions are designated as first-degree fire sensitive (i.e. fire prone) areas by Turkey’s competent forestry authority (OGM, 2013).
METHODS
METODE
Study Site – Područje istraživanja
This study was conducted in Turkish red pine forests distributed in the Antalya province, which is located on Turkey’s Southwestern Mediterranean coast (Figure 1). The Antalya province of Turkey is in the country’s Southwestern Mediterranean region; its climate is described by Iyigun et al. (2013) as a dry summer subtropical humid coastal Mediterranean climate. This type of Mediterranean climate is characterized by high levels of winter precipitation, as well as hot and dry long-summer season mainly associated with